
                                     
          

 

Postdoc Position 
Physics-constrained deep network augmentation  

of turbulence models 
Contacts 
Paola CINNELLA (paola.cinnella@sorbonne-universite.fr) 
Location : Sorbonne Université, Pierre et Marie Curie Campus, 4 Place Jussieu, 75005, PARIS, France 
Profile of the successful candidate : PhD in Fluid Mechanics, Applied Mathematics or Computer science, taste 
for multidisciplinary research, proved skills in scientific computing 
How to apply: please send the following information to P. Cinnella: CV, motivation letter, references. 
Duration: two years 
Starting date : flexible, preferably september 2023. 
Salary : fully funded positions, partial refunding of local mobility fees 

Context 
Numerical simulation of fluids plays an essential role in modeling complex physical phenomena in domains 
ranging from climate to aerodynamics. Fluid flows are well described by Navier-Stokes equations, but solving 
these equations at all scales remains extremely complex in many situations and only an averaged solution 
supplemented by a turbulence model is simulated in practice. Unfortunately turbulence models present 
important weaknesses (Xiao and Cinnella, 2019). The increased availability of large amounts of high fidelity data 
and the recent development and deployment of powerful machine learning methods has motivated a surge of 
recent work for using machine learning in the context of computational fluid dynamics (CFD), and specifically 
turbulence modelling (Durasaimy et al., 2019). Combining powerful statistical techniques and model-based 
methods leads to an entirely new perspective for CFD. From the machine learning (ML) side, modeling complex 
dynamical systems and combining model-based and data-based approaches is the topic of active new research 
directions. With the aim of fostering progress in the understanding, modeling and design of turbulent flows the 
Sorbonne Institute of Computating and Data Science (ISCD) has funded the LearnFluidS (Machine-LEARNing for 
FLUID Simulations) projet team: a well-balanced team of researchers well-known in the fields of CFD, Deep 
Learning, numerical analysis and turbulence modeling.  
Our aim is to develop the interplay between Deep Learning (DL) and CFD in order to improve turbulence 
modeling and to challenge state of the art ML techniques. 

Participants 
The project team LearnFluidS promotes the development of recent machine learning advances in the field of 
computational fluid dynamics. Until very recently these two domains were completely separated and this is only 
during the last few years, thanks to the considerable advances of Deep Learning and the increased availability of 
simulation data, that researchers from both fields started to cooperate. The project gathers specialists from the 
two disciplines involved in the thesis topic: fluid dynamics at Institut Jean Le Rond ¶’Alembert (Institute of 
theoretical, computational and experimental mechanics) and machine learning at ISIR (Institute of intelligent 
systems and robotics). ¶’Alembert has a recognized expertise in CFD, turbulence modelling and in the 
development of machine-learned RANS models using sparse formal identification techniques. The Machine 
Learning team at ISIR is well known for its expertise in Deep Learning. The team develops interdisplinary research 
on dynamical systems involving cooperation with maths and climate specialists.  

 

Objective: Combining CFD models and Deep Learning for predicting turbulence 

Our objective is to improve traditional CFD models, both in terms of complexity and of accuracy of the 
predictions,  with  the addition of ML components. Recent progresses, and the generalized use of automatic 



                                     
          

 
differentiation both for differentiable solvers and DL algorithms have paved the road to the integration of DL 
techniques and ODE/PDE solvers. In the ML community, a starting point for such investigations was the Neural 
ODE paper (Chen 2018) that promoted the use of ODE solvers for ML problems.   
We advocate for this research the use of DL modules for complementing CFD solvers, in the spirit of (Le Guen 
2021) who introduced a principled approach (APHYNITY, Augment incomplete PHYsical models for ideNtIfying 
and forecasTing complex dYnamics) however still limited to basic PDEs. In our new context, we will analyze how 
to model unclosed terms in the RANS equations. This approach can be seen as a generalization of classical closure 
models. In order to make easier this theoretical analysis, the approach will be first developed for a scalar 
surrogate of the Navier-Stokes equations, namely, the nonlinear Burgers’ equation, which has been widely used 
in the literature as a simplified ansatz for Navier-Stokes turbulence, and two-dimensional homogeneous isotropic 
turbulence. Both internal (within the PDE) and external (on the PDE outputs) corrections will be investigated. The 
system will be trained using different strategies, e.g., end to end with the DL modules and the numerical solvers 
using high-fidelity data, gradient-free ensemble variational methods, and reinforcement learning, and assessed 
in terms of accuracy, training cost, and robustness. 
In order to be useful for CFD applications a learned model must accurately simulate flows outside of the training 
distribution: operational conditions and environment may vary according to different physical factors thus 
requiring models to extrapolate to these new conditions. DL could in principle be extremely efficient for learning 
complex dynamics but they struggle with generalization to out-of-distribution data. We will adopt a new 
perspective by considering learning dynamical models from multiple environments and propose a new 
framework leveraging the commonalities and discrepancies among environments. We expect this new setting to 
be more robust to new distributions than classical empirical risk minimization or robust optimization schemes.  
The framework will then be deployed and adapted to the specificity of unsteady RANS simulations. Turbulence 
model augmentation will be achieved by supplementing classical closure models for which we have prior 
knowledge with data-driven corrections. The results will be compared with those of data-augmented turbulence 
models derived by using symbolic regression (Schmelzer et al. 2020, Cherroud et al. 2022) for the flow problems 
of the NASA Collaborative Testing challenge for data-driven turbulence models 
(https://turbmodels.larc.nasa.gov/turb-prs2022.html ). 
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