
                                     
          

 

Postdoc Position 
Model-consistent Bayesian learning of turbulence models from 

sparse data 
Contacts 
Paola CINNELLA (paola.cinnella@sorbonne-universite.fr) 
Location : Sorbonne Université, Pierre et Marie Curie Campus, 4 Place Jussieu, 75005, PARIS, France 
Profile of the successful candidate : PhD in Fluid Mechanics, Applied Mathematics or Computer science, taste 
for multidisciplinary research, proved skills in scientific computing 
How to apply: please send the following information to P. Cinnella: CV, motivation letter, references. 
Duration: two years 
Starting date : flexible, preferably september 2023. 
Salary : fully funded positions, partial refunding of local mobility fees 

Context 
Numerical simulation of fluids plays an essential role in modeling complex physical phenomena in domains 
ranging from climate to aerodynamics. Fluid flows are well described by Navier-Stokes equations, but solving 
these equations at all scales remains extremely complex in many situations and only an averaged solution 
supplemented by a turbulence model is simulated in practice. Unfortunately turbulence models present 
important weaknesses (Xiao and Cinnella, 2019). The increased availability of large amounts of high fidelity data 
and the recent development and deployment of powerful machine learning methods has motivated a surge of 
recent work for using machine learning in the context of computational fluid dynamics (CFD), and specifically 
turbulence modelling (Durasaimy et al., 2019). Combining powerful statistical techniques and model-based 
methods leads to an entirely new perspective for CFD. From the machine learning (ML) side, modeling complex 
dynamical systems and combining model-based and data-based approaches is the topic of active new research 
directions. With the aim of fostering progress in the understanding, modeling and design of turbulent flows the 
Sorbonne Institute of Computating and Data Science (ISCD) has funded the LearnFluidS (Machine-LEARNing for 
FLUID Simulations) projet team: a well-balanced team of researchers well-known in the fields of CFD, Deep 
Learning, numerical analysis and turbulence modeling.  
Our aim is to develop the interplay between Deep Learning (DL) and CFD in order to improve turbulence 
modeling and to challenge state of the art ML techniques. 

Participants 
The project team LearnFluidS promotes the development of recent machine learning advances in the field of 
computational fluid dynamics. Until very recently these two domains were completely separated and this is only 
during the last few years, thanks to the considerable advances of Deep Learning and the increased availability of 
simulation data, that researchers from both fields started to cooperate. The project gathers specialists from the 
two disciplines involved in the thesis topic: fluid dynamics at Institut Jean Le Rond ¶’Alembert (Institute of 
theoretical, computational and experimental mechanics) and machine learning at ISIR (Institute of intelligent 
systems and robotics). ¶’Alembert has a recognized expertise in CFD, turbulence modelling and in the 
development of machine-learned RANS models using sparse formal identification techniques. The Machine 
Learning team at ISIR is well known for its expertise in Deep Learning. The team develops interdisplinary research 
on dynamical systems involving cooperation with maths and climate specialists.  

Objective: Learning turbulence models from sparse and noisy data 

A major problem in ML is the need for significant amounts of training data and the difficulty at dealing with scarce 
and noisy data.  However, in fluid dynamics, abundant and reliable databases are available only from so-called 
high-fidelity simulations such as Direct and Large Eddy simulations (DNS, LES), which are extremely costly and 
limited to low/moderate Reynolds numbers and relatively simple geometries. For high-Reynolds-number, 
complex configurations of industrial interest, increasing masses of data are also available from experiments, but 



                                     
          

 
which are incomplete (not all flow variables are available, within restricted observation domains) and possibly 
noisy. A natural way for tackling the learning problem from sparse and noisy data is adopting a Bayesian 
viewpoint, which endowes the model parameters and structures with measures of probability (e.g., Barber 
2012). Bayesian machine learning (BML) is better suited for learning from scarce or noisy data, thanks to the 
regularizing effect of prior distributions. The present P.I. has approximately ten years of experience in Bayesian 
methods, including recent attemps of symbolic sparse Bayesian learning of turbulent closures (Cherroud et al. 
2022). 

In the proposed work, we wish to further explore Bayesian learning algorithms in the context of data-driven 
turbulence modeling, with special focus on CFD-in-the-loop training procedures. Such approaches allow learning 
from any observed data corresponding to an output of the CFD models supplemented by the BML turbulent 
closure. Additionally, we expect the Bayesian formulation provide robust solutions with quantified uncertainty 
for the model parameters, which can be propagated back through the solver to achieve improved CFD solutions 
with uncertainty estimates. 

A critical aspect of the procedure is represented by model training. Markov Chain Monte Carlo Techniques often 
used for the Bayesian inference of complex models are hardly in CFD due to the cost of performing a large 
number of CFD solves. However, significant speed up is expected by using gradient information or by replacing 
the costly CFD model by a ML surrogate. The present research will adress the development of efficient training 
techniques. 

Afterwards, model mixture approaches will be considered to favor model applicability to a large variety of flow 
(e.g. Cherroud et al., 2022b, Ling et al., 2022). ML techniques for finding optimal partitions of the covariate space 
(clustering), dimensionality reduction, and the construction of suitable gating functions will be adressed, with 
application again to flow problems from the NASA Collaborative Testing challenge for data-driven turbulence 
models (https://turbmodels.larc.nasa.gov/turb-prs2022.html ). 
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